Microprocessor Design

Microprocessors are the devices in a computer which make things happen. Microprocessors are capable of performing basic arithmetic operations, moving data from place to place, and making basic decisions based on the quantity of certain values.

The components of a PC computer. Part number 3 is the CPU.

Types of Processors

The vast majority of microprocessors can be found in embedded microcontrollers. The second most common type of processors are common desktop processors, such as Intel’s Pentium or AMD’s Athlon. Less common are the extremely powerful processors used in high-end servers, such as Sun’s SPARC, IBM’s Power, or Intel’s Itanium.Historically, microprocessors and microcontrollers have come in “standard sizes” of 8 bits, 16 bits, 32 bits, and 64 bits. These sizes are common, but that does not mean that other sizes are not available. Some microcontrollers (usually specially designed embedded chips) can come in other “non-standard” sizes such as 4 bits, 12 bits, 18 bits, or 24 bits. The number of bits represent how much physical memory can be directly addressed by the CPU. It also represents the amount of bits that can be read by one read/write operation. In some circumstances, these are different; for instance, many 8 bit microprocessors have an 8 bit data bus and a 16 bit address bus.

  • 8 bit processors can read/write 1 byte at a time and can directly address 256 bytes
  • 16 bit processors can read/write 2 bytes at a time, and can address 65,536 bytes (64 Kilobytes)
  • 32 bit processors can read/write 4 bytes at a time, and can address 4,294,967,295 bytes (4 Gigabytes)
  • 64 bit processors can read/write 8 bytes at a time, and can address 18,446,744,073,709,551,616 bytes (16 Exabytes)

General Purpose Versus Specific Use

Microprocessors that are capable of performing a wide range of tasks are called general purpose microprocessors. General purpose microprocessors are typically the kind of CPUs found in desktop computer systems. These chips typically are capable of a wide range of tasks (integer and floating point arithmetic, external memory interface, general I/O, etc). We will discuss some of the other types of processor units available:

General Purpose

A general purpose processing unit, typically referred to as a “microprocessor” is a chip that is designed to be integrated into a larger system with peripherals and external RAM. These chips can typically be used with a very wide array of software.


A Digital Signal Processor, or DSP for short, is a chip that is specifically designed for fast arithmetic operations, especially addition and multiplication. These chips are designed with processing speed in mind, and don’t typically have the same flexibility as general purpose microprocessors. DSPs also have special address generation units that can manage circular buffers, perform bit-reversed addressing, and simultaneously access multiple memory spaces with little to no overhead. They also support zero-overhead looping, and a single-cycle multiply-accumulate instruction. They are not typically more powerful than general purpose microprocessors, but can perform signal processing tasks using far less power (as in watts).

Embedded Controller

Embedded controllers, or “microcontrollers” are microprocessors with additional hardware integrated into a single chip. Many microcontrollers have RAM, ROM, A/D and D/A converters, interrupt controllers, timers, and even oscillators built into the chip itself. These controllers are designed to be used in situations where a whole computer system isn’t available, and only a small amount of simple processing needs to be performed.

Programmable State Machines

The most simplistic of processors, programmable state machines are a minimalist microprocessor that is designed for very small and simple operations. PSMs typically have very small amount of program ROM available, limited scratch-pad RAM, and they are also typically limited in the type and number of instructions that they can perform. PSMs can either be used stand-alone, or (more frequently) they are embedded directly into the design of a larger chip.

Graphics Processing Units

Computer graphics are so complicated that functions to process the visuals of video and game applications have been offloaded to a special type of processor known as a GPU. GPUs typically require specialized hardware to implement matrix multiplications and vector arithmetic. GPUs are typically also highly parallelized, performing shading calculations on multiple pixels and surfaces simultaneously.


2 thoughts on “Microprocessor Design

  1. Why do companies choose to use microprocessor computer?

  2. really excellent beneficial article

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s